Copied to
clipboard

G = C22×C33⋊C4order 432 = 24·33

Direct product of C22 and C33⋊C4

direct product, metabelian, soluble, monomial, A-group

Aliases: C22×C33⋊C4, C6212Dic3, (C3×C62)⋊4C4, C339(C22×C4), C325(C22×Dic3), C62(C2×C32⋊C4), (C6×C3⋊S3)⋊11C4, (C2×C6)⋊3(C32⋊C4), (C2×C3⋊S3)⋊7Dic3, C3⋊S34(C2×Dic3), (C32×C6)⋊3(C2×C4), (C2×C3⋊S3).50D6, (C3×C6)⋊4(C2×Dic3), C32(C22×C32⋊C4), C3⋊S3.7(C22×S3), (C22×C3⋊S3).8S3, (C6×C3⋊S3).65C22, (C3×C3⋊S3).10C23, (C2×C6×C3⋊S3).11C2, (C3×C3⋊S3)⋊12(C2×C4), SmallGroup(432,766)

Series: Derived Chief Lower central Upper central

C1C33 — C22×C33⋊C4
C1C3C33C3×C3⋊S3C33⋊C4C2×C33⋊C4 — C22×C33⋊C4
C33 — C22×C33⋊C4
C1C22

Generators and relations for C22×C33⋊C4
 G = < a,b,c,d,e,f | a2=b2=c3=d3=e3=f4=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, fcf-1=cd-1, de=ed, fdf-1=c-1d-1, fef-1=e-1 >

Subgroups: 1064 in 192 conjugacy classes, 53 normal (13 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, C23, C32, C32, Dic3, D6, C2×C6, C2×C6, C22×C4, C3×S3, C3⋊S3, C3⋊S3, C3×C6, C3×C6, C2×Dic3, C22×S3, C22×C6, C33, C32⋊C4, S3×C6, C2×C3⋊S3, C62, C62, C22×Dic3, C3×C3⋊S3, C3×C3⋊S3, C32×C6, C2×C32⋊C4, S3×C2×C6, C22×C3⋊S3, C33⋊C4, C6×C3⋊S3, C3×C62, C22×C32⋊C4, C2×C33⋊C4, C2×C6×C3⋊S3, C22×C33⋊C4
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, C22×C4, C2×Dic3, C22×S3, C32⋊C4, C22×Dic3, C2×C32⋊C4, C33⋊C4, C22×C32⋊C4, C2×C33⋊C4, C22×C33⋊C4

Smallest permutation representation of C22×C33⋊C4
On 48 points
Generators in S48
(1 8)(2 5)(3 6)(4 7)(9 21)(10 22)(11 23)(12 24)(13 29)(14 30)(15 31)(16 32)(17 33)(18 34)(19 35)(20 36)(25 37)(26 38)(27 39)(28 40)(41 45)(42 46)(43 47)(44 48)
(1 43)(2 44)(3 41)(4 42)(5 48)(6 45)(7 46)(8 47)(9 15)(10 16)(11 13)(12 14)(17 26)(18 27)(19 28)(20 25)(21 31)(22 32)(23 29)(24 30)(33 38)(34 39)(35 40)(36 37)
(1 17 16)(2 13 18)(3 14 19)(4 20 15)(5 29 34)(6 30 35)(7 36 31)(8 33 32)(9 42 25)(10 43 26)(11 27 44)(12 28 41)(21 46 37)(22 47 38)(23 39 48)(24 40 45)
(1 16 17)(3 19 14)(6 35 30)(8 32 33)(10 26 43)(12 41 28)(22 38 47)(24 45 40)
(1 16 17)(2 18 13)(3 14 19)(4 20 15)(5 34 29)(6 30 35)(7 36 31)(8 32 33)(9 42 25)(10 26 43)(11 44 27)(12 28 41)(21 46 37)(22 38 47)(23 48 39)(24 40 45)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)

G:=sub<Sym(48)| (1,8)(2,5)(3,6)(4,7)(9,21)(10,22)(11,23)(12,24)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(25,37)(26,38)(27,39)(28,40)(41,45)(42,46)(43,47)(44,48), (1,43)(2,44)(3,41)(4,42)(5,48)(6,45)(7,46)(8,47)(9,15)(10,16)(11,13)(12,14)(17,26)(18,27)(19,28)(20,25)(21,31)(22,32)(23,29)(24,30)(33,38)(34,39)(35,40)(36,37), (1,17,16)(2,13,18)(3,14,19)(4,20,15)(5,29,34)(6,30,35)(7,36,31)(8,33,32)(9,42,25)(10,43,26)(11,27,44)(12,28,41)(21,46,37)(22,47,38)(23,39,48)(24,40,45), (1,16,17)(3,19,14)(6,35,30)(8,32,33)(10,26,43)(12,41,28)(22,38,47)(24,45,40), (1,16,17)(2,18,13)(3,14,19)(4,20,15)(5,34,29)(6,30,35)(7,36,31)(8,32,33)(9,42,25)(10,26,43)(11,44,27)(12,28,41)(21,46,37)(22,38,47)(23,48,39)(24,40,45), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)>;

G:=Group( (1,8)(2,5)(3,6)(4,7)(9,21)(10,22)(11,23)(12,24)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(25,37)(26,38)(27,39)(28,40)(41,45)(42,46)(43,47)(44,48), (1,43)(2,44)(3,41)(4,42)(5,48)(6,45)(7,46)(8,47)(9,15)(10,16)(11,13)(12,14)(17,26)(18,27)(19,28)(20,25)(21,31)(22,32)(23,29)(24,30)(33,38)(34,39)(35,40)(36,37), (1,17,16)(2,13,18)(3,14,19)(4,20,15)(5,29,34)(6,30,35)(7,36,31)(8,33,32)(9,42,25)(10,43,26)(11,27,44)(12,28,41)(21,46,37)(22,47,38)(23,39,48)(24,40,45), (1,16,17)(3,19,14)(6,35,30)(8,32,33)(10,26,43)(12,41,28)(22,38,47)(24,45,40), (1,16,17)(2,18,13)(3,14,19)(4,20,15)(5,34,29)(6,30,35)(7,36,31)(8,32,33)(9,42,25)(10,26,43)(11,44,27)(12,28,41)(21,46,37)(22,38,47)(23,48,39)(24,40,45), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48) );

G=PermutationGroup([[(1,8),(2,5),(3,6),(4,7),(9,21),(10,22),(11,23),(12,24),(13,29),(14,30),(15,31),(16,32),(17,33),(18,34),(19,35),(20,36),(25,37),(26,38),(27,39),(28,40),(41,45),(42,46),(43,47),(44,48)], [(1,43),(2,44),(3,41),(4,42),(5,48),(6,45),(7,46),(8,47),(9,15),(10,16),(11,13),(12,14),(17,26),(18,27),(19,28),(20,25),(21,31),(22,32),(23,29),(24,30),(33,38),(34,39),(35,40),(36,37)], [(1,17,16),(2,13,18),(3,14,19),(4,20,15),(5,29,34),(6,30,35),(7,36,31),(8,33,32),(9,42,25),(10,43,26),(11,27,44),(12,28,41),(21,46,37),(22,47,38),(23,39,48),(24,40,45)], [(1,16,17),(3,19,14),(6,35,30),(8,32,33),(10,26,43),(12,41,28),(22,38,47),(24,45,40)], [(1,16,17),(2,18,13),(3,14,19),(4,20,15),(5,34,29),(6,30,35),(7,36,31),(8,32,33),(9,42,25),(10,26,43),(11,44,27),(12,28,41),(21,46,37),(22,38,47),(23,48,39),(24,40,45)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B···3G4A···4H6A6B6C6D···6U6V6W6X6Y
order1222222233···34···46666···66666
size1111999924···427···272224···418181818

48 irreducible representations

dim1111122224444
type++++-+-++
imageC1C2C2C4C4S3Dic3D6Dic3C32⋊C4C2×C32⋊C4C33⋊C4C2×C33⋊C4
kernelC22×C33⋊C4C2×C33⋊C4C2×C6×C3⋊S3C6×C3⋊S3C3×C62C22×C3⋊S3C2×C3⋊S3C2×C3⋊S3C62C2×C6C6C22C2
# reps16162133126412

Matrix representation of C22×C33⋊C4 in GL6(𝔽13)

1200000
0120000
0012000
0001200
0000120
0000012
,
100000
010000
0012000
0001200
0000120
0000012
,
100000
010000
0090010
000360
000090
000003
,
100000
010000
0030212
0009512
000010
000001
,
010000
12120000
003073
000364
000090
000009
,
800000
550000
00122310
0031158
00011210
00110111

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,3,0,0,0,0,0,6,9,0,0,0,10,0,0,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,9,0,0,0,0,2,5,1,0,0,0,12,12,0,1],[0,12,0,0,0,0,1,12,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,7,6,9,0,0,0,3,4,0,9],[8,5,0,0,0,0,0,5,0,0,0,0,0,0,12,3,0,11,0,0,2,11,11,0,0,0,3,5,2,11,0,0,10,8,10,1] >;

C22×C33⋊C4 in GAP, Magma, Sage, TeX

C_2^2\times C_3^3\rtimes C_4
% in TeX

G:=Group("C2^2xC3^3:C4");
// GroupNames label

G:=SmallGroup(432,766);
// by ID

G=gap.SmallGroup(432,766);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,56,2804,165,2693,530,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^3=d^3=e^3=f^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,f*c*f^-1=c*d^-1,d*e=e*d,f*d*f^-1=c^-1*d^-1,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽